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l Attorney Docket No. 79236 

2 

3 ENHANCED MODEL IDENTIFICATION IN SIGNAL PROCESSING 

4 USING ARBITRARY EXPONENTIAL FUNCTIONS 

5 

6 STATEMENT OF GOVERNMENT INTEREST 

7 The invention described herein may be manufactured and used 

8 by or for the Government of the United States of America for 

9 governmental purposes without the payment of any royalties 

10 thereon or therefore. 

11 

12 BACKGROUND OF THE INVENTION 

13 (1) Field of the Invention 

14 This invention relates to a computer-aided method for signal 

15 or data processing and more particularly to a method for finding, 

16 by means of nonlinear regression analyses, a Probability Density 

17 Function (PDF) for arbitrary exponential functions falling into 

18 one of four classes, the underlying probability density function 

19 and data structures conforming to the exponential model. 

20 (2) Description of the Prior Art 

21 Of the many continuous probability distributions encountered 

22 in signal processing, a good number are distinguished by the fact 

23 that they are derived from exponential functions on the time 

24 interval of 0 to oo, e.g., failure rate distributions, Poisson 

25 processes, Chi-Square, gamma, Rayleigh, Weibull, Maxwell and 



1 others involving exponential functions.  Such an exponential 

2 function is also used in O'Brien et al. (U.S. Patent No. 

3 5,537,368) to generate a corrected data stream from the raw data 

4 stream of a sensor. 

5 Occasionally modeling involves functions for which the 

6 probability density function (PDF) and its moments need to be 

7 derived de novo.  Often times, research scientists and engineers 

8 are confronted with modeling a random variable x  when the 

9 probability density function (PDF) is unknown.  It may be known 

10 that the variable can be reasonably well approximated by a gamma 

11 density.  Then solving a problem under the assumption that x has 

12 a gamma density will provide some insight into the true 

13 situation.  This approach is all the more reasonable since many 

14 probability distributions are related to the gamma function. 

15 However, deriving the PDF and its statistical moments using the 

16 standard approach involving moment generating functions (MGF) and 

17 complex-variable characteristic functions is difficult and 

18 somewhat impractical to implement in applied research settings. 

19 The complexity of current methods for constructing the PDF and 

20 MGF limits the class of models used for analyzing correlated data 

21 structures.  O'Brien et al. (U.S. Patent No. 5,784,297) provided 

22 a method for finding a probability density function (PDF) and its 

23 statistical moments for an arbitrary exponential function of the 

24 form g(x)= axmePx\  0<x<oo , where a, ß, n  > 0, m  > -1 are real 

25 constants in one-dimensional distributions and g(xl,x2,...,xl)   in the 



1 hyperplane.  However, the method in the '297 patent is based on a 

2 single probability model within the domain 0 -> oo, thus limiting 

3 its application. 

4 

5 SUMMARY OF THE INVENTION 

6 Accordingly, it is a general purpose and object of the 

7 present invention to provide a computer-aided method for 

8 determining density and moment functions for a useful class of 

9 exponential functions in signal processing. 

10 Another object of the present invention is to provide a 

li method for constructing the PDF and MGF which offers the 

12 possibility of constructing the PDF and MGF for a larger class of 

13 such functions. 

14 A still further object is to enhance standard assumptions 

15 about the structure of error or disturbance terms by including a 

16 larger class of models to choose from. 

17 These objects are provided with the present invention by a 

18 simple substitution method for finding a probability density 

19 function (PDF) and its statistical moments for a chosen one of 

20 four newly derived probability models for an arbitrary 

21 exponential function of the forms g{x) = axme~ßx ,  -oo<x<oo ; 

g(x) = a 
/ \ m      „I x-a ' x-a^ 

22       g(x) = axme~ß", 0 < x < oo ; \   b   J 
b '   , -00<X <Q0 

; and 

23 V b    J 

x-a^ 
g(x) = a\::-^1    e   Kb    ,0<JC<OO 

The model chosen will depend on the 



1 domain of the data and whether information on the parameters a 

2 and b  exists.  These parameters may typically be the mean or 

3 average of the data and the standard deviation, respectively. 

4 For example, it may be known that the signal of interest within 

5 the data being processed has a domain from -oo -> oo and a typical 

6 mean and standard deviation.  Thus a model of the third form 

7 would be used. 

8 Once the model is chosen, computer implemented non-linear 

9 regression analyses are performed on the data distribution to 

10 determine the solution set Sn(an,mn,ßn,n)   beginning with n  = 1.  A 

11 root-mean-square (RMS) is calculated and recorded for each order 

12 of n  until the regression analyses produce associated RMS values 

13 that are not changing in value appreciably.  The basis function 

14 is reconstructed from the estimates in the final solution set and 

15 a PDF for the basis function is obtained utilizing methods well 

16 known in the art.  The MGF, which characterizes any statistical 

17 moment of the distribution, is obtained using a novel function 

18 derived by the inventors and the mean and variance are obtained 

19 in standard fashion.  Once the parameters a, ß, m. and n  have been 

20 determined for a set of data measurements through the system 

21 identification modeling, the PDF-based mean and variance are 

22 determinable, and simple binary hypotheses may be tested. 

23 By the inclusion of four newly derived models, the method of 

24 the present invention provides a choice of models from a larger 

25 and more useful class of exponential functions covering the full 



1 domain (-00 —» 00) .  The method of the present invention further 

2 provides enhanced standard assumptions about the structure of 

3 error or disturbance terms by the use of additional variables 

4 such as mean and standard deviation parameters. 

5 

6 BRIEF DESCRIPTION OF THE DRAWINGS 

7 A more complete understanding of the invention and many of 

8 the attendant advantages thereto will be readily appreciated as 

9 the same becomes better understood by reference to the following 

10 detailed description when considered in conjunction with the 

11 accompanying drawings wherein corresponding reference characters 

12 indicate corresponding parts throughout the several views of the 

13 drawings and wherein: 

14 FIG. 1 shows a set of data points appearing to conform to a 

15 negative exponential (or decay) function; and 

16 FIG. 2 is a flow chart of the steps used to identify and 

17 characterize the function of FIG. 1. 

18 



1 DESCRIPTION OF THE PREFERRED EMBODIMENT 

2 Referring to FIG. 1, there is shown a plot of a measured 

3 time series.  Each point "p" corresponds to a measurement taken 

4 by a sensor at a certain time.  Such a plot may correspond to the 

5 output signals from a sonar sensor.  In order to analyze the 

6 signals, it is necessary to identify a frequency function, g(x) , 

7 which models or characterizes the data structure.  Referring now 

8 also to FIG. 2, there is shown a flow chart of the steps used to 

9 obtain g(x) .  The data are first obtained in step 10 and then the 

10 measured time series is plotted at step 12, as has been done in 

li FIG. 1 to determine, at step 14, if an exponential decay function 

12 is reasonable.  It can be seen from FIG. 1 that as time 

13 increases, the measured value decreases.  Such a decreasing 

14 function over time may correspond to a negative exponential (or 

15 decay) function.  Since the data points of FIG. 1 appear to 

16 correspond to an exponential decay function, step 14 transfers 

17 control to step 16.  If an exponential decay function was not 

18 reasonable, step 14 would exit from the method and a different 

19 model approach would be required to analyze the data. 

20 Step 16 chooses a model to characterize the data, depending 

21 on the domain of the data and whether certain parameter 

22 information, such as mean and standard deviation, is known about 

23 the data.  As can be seen from the grid in step 16, Model I and 

24 Model III are applicable where the domain is -co —> oo; Model II 

25 and Model IV are applicable for domains of 0 —> oo; Model I and 



1 Model II are applicable when no parameter information is 

2 available; and Models III and Model IV are applicable when 

3 parameter information is available. 

4 For FIG. 1, g(x)   is shown as a sloping-down arc and is 

5 assumed to be an optimum least-squares solution derived for the 

6 discrete time series data points "p".  It is noted that the 

7 domain for the data is 0 —> oo.  In addition, for the example of 

8 FIG. 1, it will be assumed that no parameter information is 

9 available, thus Model II is appropriate.  Let the function g(x) 

10 for Model II be denoted by 

ii g(x) = axme~Px", 0<x<oo ,^ 

12 where a, ß, n  > 0, m  > -1 are real constants.  The function g(x) 

13 is obtained in the standard manner for exponential functions. 

14 First take the natural logarithm of the modeling basis, or 

15 exponential function of Equation (1): 

\og[g(x)] = \oga+m\ogx-ßx". (2) 

17 Because the term ßx"   in nonlinearizable, a nonlinear approach 

18 must be taken.  This approach consists of performing regression 

19 analysis on g{x) , with the nonlinear parameter n  set to a 

20 specific integer value n  =  1, 2, 3, etc.  Each [x,y] observation 

21 in the sample is indexed with the subscript i, where i runs from 

22 1 to p, p  being the total number of data points.  Nonlinear 

23 regression analyses are performed on the data distribution based 

24 on the least squares minimization criterion, stated as follows: 



1 Sn(a,m,ß,n) = Y^ogyl-loga-mlog?ci+ßx?] -^min (3) 

2 where a, ß, m  and n  are real-valued constants that we seek to 

3 identify through classical least squares regression analyses. 

4 Step 18 begins the regression analyses by first setting n  = 1. 

5 In step 20 the regression is performed using the ordinary 

6 least squares (OLS) algorithm, well known to those skilled in the 

7 art, beginning with the parameter n  = 1 from step 18.  The result 

8 is the first solution set, S^a^m^ß^l),   with parameters a, ß and m 

9 estimated.  The solution set is recorded and stored.  In step 22 

10 a measure of the adequacy of solution set S^a^m^ß^l)   is obtained 

11 and, in standard engineering fashion, the root-mean-square (RMS) 

12 ' statistic is calculated and recorded.  Since n  = 1, step 24 

13 passes control to step 26 which increments parameter n  and 

14 returns to steps 20 and 22.  With n  now having a value of 2, step 

15 20 calculates a new solution set S2{a2,m2,ß2,2),   and step 22 

16 calculates a new RMS statistic.  Since n  is now greater than 1, 

17 step 24 passes control to step 28 which tests for convergence of 

18 the associated RMS statistics.  If the associated RMS values are 

19 changing in value more than a chosen convergence threshold, step 

20 26 is repeated so as to increment n  and steps 20 through 28 are 

21 repeated until at some value n  = k,   the associated RMS values are 

22 not changing in value by more than the chosen convergence 

23 threshold.  The solution set Sk(ak,mk,ßk,k)   is then called the 

24 "optimum" solution.  Step 30 obtains the basis function which is 

25 the exponential function reconstructed from the estimates in the 



1 final solution set Sk{ak,mk,ßk,k).  The basis function will be 

2 identified as follows: 

3 g(x)=axme-ßxk, (4) 

4 obtained from the parameter estimate set Sk{ak,mk,ßk,k),   the 

5 empirical least squares solution to the data generated in the 

6 time series.  In step 32, the probability density function (PDF), 

7 a concept well known to those in the art, is obtained from the 

8 basis function.  The moment generating function (MGF) is then 

9 obtained in step 34 and the mean and variance are obtained from 

10 the MGF in step 36. 

li The mathematics involved in obtaining the PDF and MGF are 

12 quite complex.  The method of the present invention utilizes two, 

13 independently derived improper definite integrals based on the 

14 general exponential integral formula in F.J. O'Brien, S.E. Hammel 

15 and C.T. Nguyen, "The Moi Formula for Improper Exponential 

16 Definite Integrals," Perceptual  and Motor Skills,   79, 1994, pp. 

17 1123-1127, and presented in F.J. O'Brien, S.E. Hammel and C.T. 

18 Nguyen, "The Moi Formula," accepted in I.S. Gradshteyn and I.M. 

19 Ryzhik, Table  of Integrals,   Series  and Products,   Academic Press 

20 (New York 1994).  These two new integrals take the forms: 

21 

22 

■ 2—■— ,for even function on - oo < x < » 
np 

\axme'ßx"dx=\     where/ =H±1± > o,m > 0,cc,ß,n > 0 ;   and (5! 
n 

0, odd function 



13 

15 

2 f axm:e_/fc" dx = ?^- for 0<x<oo where y = T^>0,m> -1, a,ß,n>0, (6) 
J

0 nßr n 

3 where r(y) represents the standard gamma function in Equations (5) 

4 and (6).  It will be appreciated that many real-valued one- 

5 dimensional and, by extension, multidimensional exponential 

6 functions conform to those two integrals above including 

7 functions (comprising the integrands) which must first be 

8 manipulated algebraically and/or analytically by means of change 

9 of variable, substitution, binomial expansion, completing the 

10 square or first-order differential equation analysis 

li       manipulation, inter alia.  The first model, Model I, involves the 

12       integral of (5) and takes the form: 
oo 

jaxme-fic°dx,-oo<x<oo. (7) 

14 The   second model,   Model   II,      is  based  on  Equation   (6) 

\axme^dx    0 < x < oo . (8) 

16       The general integral of Model III is based on Equation (5): 

~b 

x   C   —  \m -ß\ — 
17 for! J e   ^ b ' dx,   -oo < x < oo . (9) 

18 The last model, Model IV, arises less often than others, but it 

19 is a valid expression of probability models to be considered. 

20 The integral of interest is, based on (2): 

10 



'a(—) e^ b J dx,   0<x<oo. (10) 

2 In both Equations (9) and (10), a  and b  are some constants 

3 selected by the practitioner and represent parameters of the data 

4 for which the user of the method has some knowledge.  As 

5 previously noted, these parameters may typically be the mean and 

6 standard deviation of the data.  Solving Equations (9) and (10) 

7 involves a change of variable such that s=  and ds/dx  = b . 
b 

8 Then it can readily be seen that Equation (9) falls under 

9 Equation (5) and Equation (10) falls under Equation (6). 

10 Use of the Equations (7) through (10) will simplify the 

li mathematics involved in deriving PDF's and moments for a useful 

12 class of continuous functions.  Table 1 lists twelve frequently 

13 encountered continuous probability density functions (PDF's) 

14 taken from standard sources such as P.J. Hoel, et al., 

15 Introduction   to  Probability  Theory,   Houghton-Mifflin (Boston, 

16 1971) and Abramowitz, M., Stegun, I.A., chapter 26, Handbook of 

17 Mathematical  Functions,   Washington, D.C. (Government Printing 

18 Office 1964).  Each of those densities can be classified into one 

19 of the four probability models above and expressed in terms of 

20 the seven parameters, a, b,   a, m,   n,   ß and y of the above four 

21 classes of exponential functions.  Each of the densities in Table 

22 1 is distinguished by the fact that when integrated over its 

li 



appropriate interval, 0 (or -oo) to oo, each is equal to 1, the 

2 definition of a PDF. 
3 
4 TABLE 1 
5 
6 Selected Univariate Densities Based on Exponen tial Functior 
7 

Density Name Domain Probability Parameter 
density Restriction 
function, f(x) 

Exponential 0 < x <  oo 1 —Ax 
Ae 

0 < X <  oo 

Gamma 0 < x <  oo A       P-\  -;JT 

T(P) 

0 
0 

< 

< 

p <  oo 

X <  oo 

Chi-Square 0 < x <  oo 
*2 

0 < n < oo 

Rayleigh 0 < x <  oo ~    -ax2 

2 axe 0 < a  <  oo 

Gamma- 
Poisson 

0 < x < oo d(ctif      md- l -C/txrf e 
0 
0 

< 

< 

m < oo 
A, < oo 

Weibull 0 < x < oo 

r(iw) 

abx    e 

Maxwell        0 < x < oo 

Error Function -oo < x < oo 

■Tn 

x e 2 

-h2X2 

0   <   c  < oo 
2   <  d < oo 

0   <   a  < oo 

0   <  b < oo 

none 

0   <  h  < oo 

12 



1 
2 

3 

TABLE   1    (cont. 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Normal 
(Standardized) 

Normal 
(Non 
Standardized) 

Laplace 

Pearson 
(Type III) 

Domain Probability 
density 
function,      f{x) 

Parameter 
Restriction 

-oo <  x < 00 1          -ix» 
"7=e2 

■JlTC 

none 

-oo <  x < 00 

1  «-» .   er  J 
-00   <   JU   <    oo 

(T-JlJC 
0  <  a < oo 

-oo   <   X < 00 1      -1^-1 -oo <   a  <  oo 
— e' °' 0   <  b < oo 

a < x < oo 

lb 
-oo < a < oo 

0 < jb < oo 

0 < p < oo 

Equations (5) and (6) are used in step 32 to find a one- 

dimensional probability density function (PDF) for one of the 

four classes (Models I through IV) of exponential functions 

chosen at step 16.  Abramowitz provides a summary of the 

mathematical properties comprising a PDF.  For the purposes of 

this method, a PDF f (x)   is assumed to be a real-valued non 

negative function.  A PDF for Model I and Model III will also be 

an even function.  In Equation (5), m  and n  are even numbers or 

fractions with even numerators.  Continuing with the example of 

Model II used previously, then for any function corresponding to 

Equation (1), the PDF f(x) is given by standard integral calculus 

techniques applied to bounded, improper exponential definite 

integrals: 

13 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
12 

13 
14 

/M=^* -
m„-A" 

r(r) 
/(x)>0 

00 

J f(x)dx- 1, 
o 

where f(x) will denote the PDF of an arbitrary distribution. 

Using similar reasoning, it can be demonstrated that for the 

other three probability models, the corresponding PDF's are as 

given in Table 2. 

TABLE 2. 

(Hi 

Model Domain   Integral 
Equation 

-oo<X<co       t     m -fi» 
\axe     ax 

Density Functions 

Normalizing    PDF 
Constant c    f (x) 

II 0<x<oo 
\axe     ax 

III        -oo<x<oo      f   (x-a\m -/>— \ 
I m I  e   y b > ax 

nß 
2cT(y) 

nß 

nßr 

2abF(r) 

nß 
2T(y) 

m    -Bx" x e 

nß m   -Bx" 
x e 

T(r) 

nß 
2bT(r)^   b 

nß   fx-ay>f 

15 

16 

IV 0<x<oo r   I H (^Ve-W*  _ngL 
abT(y) bT(r)^   b   ) 

14 



l The following parameter restrictions apply to the models: 

2 

m + l     _ 
y > 0 

3 Model I (even function PDF)        n 
m>0,n, a,ß > 0 

m + l 
y = >0 

n 
Model II m>-\ 

a,ß, n > 0 

m + l n 
y= >0 

n 
Model III (even function PDF) m>0,n,a,ß,b>0 

-oo < a < °o 

m + l n y = > 0 
n 

9 Model IV m> -1    . 

a,ß, n,b>0 
-oo < a < oo 

io Once the PDF is obtained, the moment generating function 

11 (MGF), which characterizes any statistical moment of the 

12 distribution, is obtained in step 34.  The moments of a 

13 probability density function are important for several reasons. 

14 The first moment corresponds to the mean of the distribution, and 

15 the second moment allows a calculation of the dispersion or 

16 variance of the distribution as indicated in step 36.  The mean 

is 



1 and variance may then be used in the central limit theorem or 

2 normal approximation formula for purposes of hypothesis testing. 

3 Additional moment-based relations such as skewness and kurtosis 

4 coefficients can also be calculated. 

5 The moment generating functions (MGF) for the four models 

s are shown in Tables 3a (moments about the origin) and 3b (moments 

7 about the mean: 

8 TABLE 3a. 

9 Moments About Origin Function 

Model  Moments Function, EXj Notes 

I ß-y"T{r+jln) EXJ  = °' 0   odd (J * 1] 

II
 . ß~J/"T(r+j/n) 

r(/) 

III ,--2h2t/?-2i/„iv    2^ EXj  =   0,   j   odd   (j  >  3) 
,-!   2£a     b  P     \r+~) 

10 

li 

— z r(r)h 

IV 

ty)U        (2k)\(j-2k)\ 

.,   jaj-*b>fryT(r+£) 

Wh    kiu-k)\ 

16 



1 TABLE 3b. 

2 Moments About Mean Functions 

Model  Moments Function, E(X-/j)j             Notes 

I fJ/"F(r+j/n)                                                      E(X-{i)j  = 0, j odd 

II 

r(r)^v '           k\(j-k)\ 

III b*flirty+j/n)                                                     E(X-n)j  = 0, j   odd (j > 3) 

IV 

flb,/rK±{-rr 
r(r) 

■3 

*!(/-*)! 

4 The mean and the variance are obtained in step 36 in 

5 standard fashion well known in the art.  The mean is defined as 

6 H = E(x) ,   and the variance is defined as a2 = E{x2)   -  \i2.  The 

7 

8 

9 

mean and variance for the four models are shown in Table 4: 

17 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Model    Mean,   \i 

I 0 

TABLE   4 

Means and Variances 

Variance,   a 

II 

r(y) /?■"-! 

r(r) 

ir^+-J 
r(r) 

rK) 
r(r) 

ill 

IV 
ih„-l/nr(r+1/n) , U \J      \\\ T\J + -n)    \T\? + - 

Hr) m 

The mean and variance may then be used in the central limit 

theorem or normal approximation formula for purposes of 

hypothesis testing in step 38, the primary use of the method 

being to test statistically hypotheses about the behavior of such 

functional forms once the empirical least squares methods have 

identified an applicable model derived from actual measurements. 

The central limit theorem or normal approximation formulas are 

typically of interest to those skilled in the art for evaluation 

of simple hypotheses. Chebychev's   Theorem,   which gives the 

probability of deviation from a mean regardless of the 

18 



1 distribution, may also be of interest.  The results of the 

2 hypotheses testing of step 38 can then be used to direct 

3 additional data gathering at step 40. 

4 Confirmatory calculations, based on the entire method for 

5 the known probability distributions of Table 1, substantiate the 

6 correctness of the model calculations in that they agree with 

7 well known published results from statistical literature.  In 

8 addition, the densities of Table 1 can be classified into the 

9 four models as follows: 

10 Model I - Error Function and Normal (Standardized); 

ii Model II - Exponential, Gamma, Chi-Square, Rayleigh, Gamma- 

12 Poisson, Weibull and Maxwell; 

13 Model III - Normal (non-Standardized) and Laplace; and 

14 Model IV - Pearson (Type III). 

15 It can be seen from the iterative nature of the OLS 

16 algorithm being used that the method is suitable for 

17 implementation on computer 50, shown encompassing steps 18 

18 through 40.  Depending on the nature of the sensors being used to 

19 generate the data and on the nature of the data itself, the 

20 functions of computer 50 may include obtaining the data at step 

21 10 through choosing a model at step 16, as shown by enlarged 

22 computer portion 50a.  Alternately, steps 10 through 16 may be 

23 performed by a user and the results input into computer 50 to 

24 perform the regression analysis. 

19 



1 

2 

3 

4 

5 

S 

It is to be noted that the form of Equation (3) and the 

basis function, Equation (4) vary corresponding to the model 

chosen at step 16.  Equation (3) is used for Model I and II, the 

limits being -oo <{xiryi)<  oo for Model I and 0 <{Xi,y±)<  oo for 

Model II.  For Models III and IV, a substitution is made into 

Equation (3) yield: 

Sn(a,m,ß,n) = YJ log yi - log a - m log 
^   b   J 

+ß 
' x, -an 

.-]2 

Kb) 
min, 12: 

8 

9 

10 

11 

12 

13 

Models III and IV having limits corresponding to Models I and II, 

respectively.  The basis functions for Model I are the same as 

Equation (4) with limits as shown above.  As with Equation (3), 

the basis function for Models III and IV is also obtained by 

substitution and having the same limits as above: 

g(x) = a\^—^-\  e <¥)" (4: 

14 

15 

16 

17 

18 

19 

20 

21 

22 

What has thus been described is a method which offers a 

general solution for determining density and moment functions for 

a useful class of exponential functions in signal processing. 

The present method offers the possibility of constructing the PDF 

and MGF for a much larger class of such functions than the 

standard distributions, such as those listed in Table 1. 

Moreover, standard assumptions about the structure of error or 

disturbance terms can be enhanced by including a larger class of 

models to choose from.  Many alternative or additional approaches 

20 



1 can be introduced into the method disclosed.  For example, the 

2 regression analyses can be performed with the key parameter n  set 

3 to noninteger values.  Also, measures other than the standard RMS 

4 statistic, such as the normalized "squared statistical 

5 correlation coefficient", can be used to judge the degree of fit 

6 to the distribution.  Further, many real-valued, one-dimensional 

7 and, by extension, multidimensional exponential functions conform 

8 to the two integrals Equations (5) and (6) but which must first 

9 be manipulated algebraically and/or analytically by means of 

io change of variable, substitution, binomial expansion, completing 

ii the square or first-order differential equation analysis 

12 manipulation, inter alia, prior to classification of the function 

13 into one of the four models for use in the method of the present 

14 invention. 

15 In light of the above, it is therefore understood that 

is the invention may be 

17 practiced otherwise than as specifically described. 

21 



l Attorney Docket No. 79236 

2 

3 ENHANCED MODEL IDENTIFICATION IN SIGNAL PROCESSING 

4 USING ARBITRARY EXPONENTIAL FUNCTIONS 

5 

6 ABSTRACT OF THE DISCLOSURE 

7 

8 A method for finding a probability density function (PDF) 

9 and its statistical moments for a chosen one of four newly 

10 derived probability models for an arbitrary exponential function 

li of the forms g(x) = ax'VA",  -oo<x<oo ; 

„„ g(x) = a\  e     "    , -oo<x<oo 
12 g(x) = axme^ , 0 < x < oo ;      Kb   ) ; and 

X~a]    ~P[-^\o<x« g(x) = a\ \ e     "    , 0 < x < oo 
13 V b   J .     The model chosen will depend on the 

14 domain of the data and whether information on the parameters a 

15 and b  exists.  These parameters may typically be the mean or 

16 average of the data and the standard deviation, respectively. 

17 Non-linear regression analyses are performed on the data 

18 distribution and a basis function is reconstructed from the 

19 estimates in the final solution set to obtain a PDF, a moment 

20 generating function and the mean and variance.  Simple hypotheses 

21 about the behavior of such functional forms may be tested 

22 statistically once the empirical least squares methods have 

23 identified an applicable model derived from actual measurements. 
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